Mathematical induction

Mathematical induction can be informally illustrated by reference to the sequential effect of falling dominoes.

Mathematical induction is a method of mathematical proof typically used to establish that a given statement is true of all natural numbers (positive integers). It is done by proving that the first statement in the infinite sequence of statements is true, and then proving that if any one statement in the infinite sequence of statements is true, then so is the next one.

The method can be extended to prove statements about more general well-founded structures, such as trees; this generalization, known as structural induction, is used in mathematical logic and computer science. Mathematical induction in this extended sense is closely related to recursion.

Mathematical induction should not be misconstrued as a form of inductive reasoning, which is considered non-rigorous in mathematics (see Problem of induction for more information). In fact, mathematical induction is a form of rigorous deductive reasoning.[1]

History

In 370 BC, Plato’s Parmenides may have contained an early example of an implicit inductive proof.[2] The earliest implicit traces of mathematical induction can be found in Euclid’s [3] proof that the number of primes is infinite and in Bhaskara’s “cyclic method”.[4] An opposite iterated technique, counting down rather than up, is found in the Sorites paradox, where one argued that if 1,000,000 grains of sand formed a heap, and removing one grain from a heap left it a heap, then a single grain of sand (or even no grains) forms a heap.

An implicit proof by mathematical induction for arithmetic sequences was introduced in the al-Fakhri written by al-Karaji around 1000 AD, who used it to prove the binomial theorem and properties of Pascal’s triangle.

None of these ancient mathematicians, however, explicitly stated the inductive hypothesis. Another similar case (contrary to what Vacca has written, as Freudenthal carefully showed) was that of Francesco Maurolico in his Arithmeticorum libri duo (1575), who used the technique to prove that the sum of the first n odd integers is n2. The first explicit formulation of the principle of induction was given by Pascal in his Traité du triangle arithmétique (1665). Another Frenchman, Fermat, made ample use of a related principle, indirect proof by infinite descent. The inductive hypothesis was also employed by the Swiss Jakob Bernoulli, and from then on it became more or less well known. The modern rigorous and systematic treatment of the principle came only in the 19th century, with George Boole,[5] Charles Sanders Peirce,[6] Giuseppe Peano, and Richard Dedekind.[4]

Description

The simplest and most common form of mathematical induction proves that a statement involving a natural number n holds for all values of n. The proof consists of two steps:

The basis (base case): showing that the statement holds when n is equal to the lowest value that n is given in the question. Usually, n = 0 or n = 1.
The inductive step: showing that if the statement holds for some n, then the statement also holds when n + 1 is substituted for n.

The assumption in the inductive step that the statement holds for some n is called the induction hypothesis (or inductive hypothesis). To perform the inductive step, one assumes the induction hypothesis and then uses this assumption to prove the statement for n + 1.

The choice between n = 0 and n = 1 in the base case is specific to the context of the proof: If 0 is considered a natural number, as is common in the fields of combinatorics and mathematical logic, then n = 0. If, on the other hand, 1 is taken as the first natural number, then the base case is given by n = 1.

This method works by first proving the statement is true for a starting value, and then proving that the process used to go from one value to the next is valid. If these are both proven, then any value can be obtained by performing the process repeatedly. It may be helpful to think of the domino effect; if one is presented with a long row of dominoes standing on end, one can be sure that:

The first domino will fall
Whenever a domino falls, its next neighbor will also fall,

so it is concluded that all of the dominoes will fall, and that this fact is inevitable.

Induction on more than one counter

It is sometimes desirable to prove a statement involving two natural numbers, n and m, by iterating the induction process. That is, one performs a basis step and an inductive step for n, and in each of those performs a basis step and an inductive step for m. See, for example, the proof of commutativity accompanying addition of natural numbers. More complicated arguments involving three or more counters are also possible.

Infinite descent
Main article: Infinite descent

Another variant of mathematical induction — the method of infinite descent — was one of Pierre de Fermat’s favorites. This method of proof works in reverse, and can assume several slightly different forms. For example, it might begin by showing that if a statement is true for a natural number n it must also be true for some smaller natural number m (m < n). Using mathematical induction (implicitly) with the inductive hypothesis being that the statement is false for all natural numbers less than or equal to m, we can conclude that the statement cannot be true for any natural number n. Complete induction Another variant, called complete induction (or strong induction or course of values induction), says that in the second step we may assume not only that the statement holds for n = m but also that it is true for all n less than or equal to m. Complete induction is most useful when several instances of the inductive hypothesis are required for each inductive step. For example, complete induction can be used to show that F_n = \frac{\varphi^n - \psi^n}{\varphi - \psi} where Fn is the nth Fibonacci number, φ = (1 + √5)/2 (the golden ratio) and ψ = (1 − √5)/2 are the roots of the polynomial x2 − x − 1. By using the fact that Fn + 2 = Fn + 1 + Fn for each n ∈ N, the identity above can be verified by direct calculation for Fn + 2 if we assume that it already holds for both Fn + 1 and Fn. To complete the proof, the identity must be verified in the two base cases n = 0 and n = 1. Another proof by complete induction uses the hypothesis that the statement holds for all smaller n more thoroughly. Consider the statement that "every natural number greater than 1 is a product of prime numbers", and assume that for a given m > 1 it holds for all smaller n > 1. If m is prime then it is certainly a product of primes, and if not, then by definition it is a product: m = n1 n2, where neither of the factors is equal to 1; hence neither is equal to m, and so both are smaller than m. The induction hypothesis now applies to n1 and n2, so each one is a product of primes. Then m is a product of products of primes; i.e. a product of primes.

This generalization, complete induction, is equivalent to the ordinary mathematical induction described above. Suppose P(n) is the statement that we intend to prove by complete induction. Let Q(n) mean P(m) holds for all m such that 0 ≤ m ≤ n. Then Q(n) is true for all n if and only if P(n) is true for all n, and a proof of P(n) by complete induction is just the same thing as a proof of Q(n) by (ordinary) induction.

Transfinite induction
Main article: Transfinite induction

The last two steps can be reformulated as one step:

Showing that if the statement holds for all n < m then the same statement also holds for n = m. This is in fact the most general form of mathematical induction and it can be shown that it is not only valid for statements about natural numbers, but for statements about elements of any well-founded set, that is, a set with an irreflexive relation < that contains no infinite descending chains. This form of induction, when applied to ordinals (which form a well-ordered and hence well-founded class), is called transfinite induction. It is an important proof technique in set theory, topology and other fields. Proofs by transfinite induction typically distinguish three cases: when m is a minimal element, i.e. there is no element smaller than m when m has a direct predecessor, i.e. the set of elements which are smaller than m has a largest element when m has no direct predecessor, i.e. m is a so-called limit-ordinal Strictly speaking, it is not necessary in transfinite induction to prove the basis, because it is a vacuous special case of the proposition that if P is true of all n < m, then P is true of m. It is vacuously true precisely because there are no values of n < m that could serve as counterexamples. Proof of mathematical induction The principle of mathematical induction is usually stated as an axiom of the natural numbers; see Peano axioms. However, it can be proved in some logical systems. For instance, it can be proved if one assumes: The set of natural numbers is well-ordered. Every natural number is either zero, or n+1 for some natural number n. For any natural number n, n+1 is greater than n. To derive simple induction from these axioms, we must show that if P(n) is some proposition predicated of n, and if: P(0) holds and whenever P(k) is true then P(k+1) is also true then P(n) holds for all n. Proof. Let S be the set of all natural numbers for which P(n) is false. Let us see what happens if we assert that S is nonempty. Well-ordering tells us that S has a least element, say t. Moreover, since P(0) is true, t is not 0. Since every natural number is either zero or some n+1, there is some natural number n such that n+1=t. Now n is less than t, and t is the least element of S. It follows that n is not in S, and so P(n) is true. This means that P(n+1) is true, and so P(t) is true. This is a contradiction, since t was in S. Therefore, S is empty. It can also be proved that induction, given the other axioms, implies well-ordering. See also Combinatorial proof Recursion Recursion (computer science) Structural induction

On this day...

Leave a Comment